Pandas
I/O
python
### read json
pd.read_json(FILENAME)
### read excel
pd.read_excel(FILE, engine="openpyxl")
### read in chunk
for index, chunk in enumerate(pd.read_csv(i, chunksize=chunksize)):
print(print("======= #{} =======".format(i)))
df = chunk
### quote string in csv
import csv
pd.DataFrame(d).to_csv("debug.csv", quoting=csv.QUOTE_NONNUMERIC)
### convert to bytes
df.to_csv(index=False).encode()
### read sample dataset
df = pd.read_csv(
"https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv"
)
Save Excel worksheets
python
import pandas as pd
df1 = pd.DataFrame({"Data": ["a", "b", "c", "d"]})
df2 = pd.DataFrame({"Data": [1, 2, 3, 4]})
df3 = pd.DataFrame({"Data": [1.1, 1.2, 1.3, 1.4]})
writer = pd.ExcelWriter("multiple.xlsx", engine="xlsxwriter")
df1.to_excel(writer, sheet_name="Sheeta")
df2.to_excel(writer, sheet_name="Sheetb")
df3.to_excel(writer, sheet_name="Sheetc")
writer.save()
Ignore warnings
python
from pandas.errors import DtypeWarning
from pandas.core.common import SettingWithCopyWarning
import warnings
warnings.simplefilter(action="ignore", category=DtypeWarning)
warnings.simplefilter(action="ignore", category=SettingWithCopyWarning)
DataFrame
Styling
python
def color_negative_red(val):
"""
Takes a scalar and returns a string with
the css property `'color: red'` for negative
strings, black otherwise.
"""
color = "red" if not val else "white"
return "background-color: %s" % color
df.T.style.applymap(color_negative_red)
Filter
python
# filter two conditions
df[(df["CARCC"] >= 1000) & (df["CARCC"] <= 3300)]
# filter where categorical count is less than / greater than x
df[df.groupby("CARBRAND")["CARBRAND"].transform("size") >= 10]
# filter by list of values
df[df["A"].isin([3, 6])]
String
python
# assign array(in concat string format) to multiple column
df[["sentiment", "weight"]] = df["y"].str.split(", ", expand=True)
# strip whitespaces from pandas
pd.read_csv("project.csv", sep=",").apply(
lambda x: x.str.strip() if x.dtype == "object" else x
)
# strip string in string columns
df[df_obj.columns] = df_obj.apply(lambda x: x.str.strip())
Join
python
home_accr = home_accrs[0].join(home_accrs[1:]) # chain join
## cartesian cross-join
region.assign(key=1).merge(property_type.assign(key=1), on="key").drop("key", axis=1)
Apply function
python
## apply lambda
df_page_paths[df_page_paths["pagePath"].apply(lambda x: "?" in x and x[:2] != "/?")]
## apply where IN=2 col and OUT=2 col
def rule(row):
lat, lon = utm.to_latlon(row["X"], row["Y"], 45, "K")
return pd.Series({"lat": lat, "long": long})
df.merge(df.apply(rule, axis=1), left_index=True, right_index=True)
## two input cols, 1 output col
df["newcolumn"] = df.apply(lambda x: fxy(x["A"], x["B"]), axis=1)
Dtype casting
python
# cast to numeric
subject_info["price_min"].apply(pd.to_numeric, errors="coerce")
# datetime
pd.to_datetime(raw_data["Mycol"], format="%d%b%Y:%H:%M:%S.%f")
df_lead["BIRTHDATE"] = pd.to_datetime(df_lead["BIRTHDATE"], infer_datetime_format=True)
SQLAlchemy
python
from sqlalchemy import create_engine, Index
engine = create_engine("postgresql+psycopg2://USER:PASSWORD@HOST/DB_NAME")
df.to_sql(
name=table_name,
con=engine,
index_label="idx",
if_exists="append",
chunksize=chunksize,
method="multi",
)
# note: if query has % replace it with %%
df = pd.read_sql(sql, cnxn)
df = psql.read_sql(
(
'select "Timestamp","Value" from "MyTable" '
'where "Timestamp" BETWEEN %(dstart)s AND %(dfinish)s'
),
db,
params={
"dstart": datetime(2014, 6, 24, 16, 0),
"dfinish": datetime(2014, 6, 24, 17, 0),
},
index_col=["Timestamp"],
)
Visualizations
python
columns = list(df_area_usable_accr)
color = ["b" for i in columns]
# highlight usa:
# color[ country_names.index("usa") ] = "b"
# highlight canada:
color[columns.index("mean_accr_unittype")] = "r"
color[columns.index("median_accr_unittype")] = "r"
df_area_usable_accr.iloc[0].plot(
kind="barh",
title="area_usable accr for home (more is better)",
color=color,
xlim=(0.75, 0.86),
)
## another example
law_count.plot.line(x="scrape_period", y="count", rot=90)
### template
import matplotlib.pyplot as plt
gdf.plot(figsize=(50, 45)).get_figure().savefig("hello.png")
Cookbook
Get null count for each column
python
df = df.replace(0, np.nan)
counts = df.apply(lambda x: x.isnull().value_counts()).T
counts.columns = ["not null", "null"]
counts = counts[["not null"]]
counts = counts[counts["not null"] >= 1000]
counts
Split column w multiple values to separate rows
python
# https://www.mikulskibartosz.name/how-to-split-a-list-inside-a-dataframe-cell-into-rows-in-pandas/
data.ingredients.apply(pd.Series).merge(data, right_index=True, left_index=True).drop(
["ingredients"], axis=1
).melt(id_vars=["cuisine", "id"], value_name="ingredient").drop(
"variable", axis=1
).dropna()
Group by & get max value-rows only
python
df_out = df[df["ratio"] == df.groupby(["comp_string1"])["ratio"].transform(max)]
df.groupby("project_name")["similarity_score"].nlargest(10)
Fill na from another column
python
# combining two columns
df.bar.combine_first(df.foo)
df["bar"] = np.where(pd.isnull(df["bar"]), df["foo"], df["bar"])
Resources
- Pandas Tutor - Lets you write Python pandas code in your browser and see how it transforms your data step-by-step.